惊情四百年
导演:
/ 弗朗西斯·福特·科波拉
剧情:
这是一部阴森诡异的吸血鬼传说,同时也是一个凄美感伤的爱情故事。 爱人韩国电影完整版公元1462年,土耳其人入侵君士cl社区最新的地址坦丁堡,并威胁到整个基督教。罗马尼亚大将军德古拉伯爵(加里•奥德曼 饰)临危受命征讨我的小可爱(h)辛颜,不料就在他获胜之时...
全民小英雄
导演:
/ 罗伯特·罗德里格兹
主演:
剧情:
  外星入侵者绑架了地球的超级英雄,他们的孩子则被匆匆送进政府避难所,但机智过人的青少女蜜西(Yaya Gosselin 饰)使尽各种招数,一心要拯救她的超级英雄爸爸马可斯(Pedro Pascal 饰),为此她跟其他超级小英雄携手合作,逃离当局神秘下载三级片的保母格拉娜达女士(Priyanka Chopra Jonas 饰)。这群孩子必须各自使出包括超强弹力、控制时间和预言未来在内的力量并肩作战,组成无人能敌的团队,才能成功救出爸爸妈妈。动作画面精彩且真挚动人的《全民小英雄》由《非常小特务》、《鲨胆小韩国电影下载英雄》导演 Robert Rodriguez 执导,并请到 Boyd Holbrook、Christian Slater、Chris McDonald 及 Adriana Barraza 同台演出。
宝藏1923
导演:
/ G·W·帕布斯特
剧情:
鬼泣女妖
导演:
/ 戈登·贺斯勒
剧情:
  In seventeenth century England Lord Whitman wages unending war on what he sees as the e两个人的视频免费播放ver-present scourge of witchcraft, and many local villagers have suffered at his hands. But one victim uses her occult powers to curse his family, enlisting unknowing help from one of the household.
地平线系列:太阳风暴地球的威胁
导演:
/ Ben Fox
剧情:
电视剧扫黑风暴40集在线观看
明天会更好2011
导演:
/ 多罗塔·肯杰扎夫斯卡
主演:
剧情:
  三个无家可归的男孩,两个兄弟,他们是好朋友,住在俄罗斯的铁路车站。有一天,他们决定去在寻找一个更美好的明天。他们想越过边界偷偷进入波兰,寻找他们想要的一切,可是孩子们还没有家庭非凡任务迅雷下载,朋友,幸福... ...  Dorota Kędzierzawska's film tells the story of three homeless Russian boys who travel to Poland for a better life, with the hope that l ife is different and be我的好妈妈8中文在线播放tter somewhere else. The boys wanted to change something in their life.
红色翅膀:火烈鸟故事
导演:
/ Matthew Aeberhard,Leander Ward
剧情:
  一部关于火烈鸟生活周期的自然纪录片,影片拍摄于坦桑尼亚北部的纳特龙湖。  在一个遥远且被人遗忘的野外,还存在着大自然最后的伟大杰作:数百万有着红色翅膀的的火烈鸟正展开双翼,经历着出生、成长和死亡的生命旅程。  影片中有着太多此前从未被摄影机记录过的雄伟影像,并且记录了这群濒临灭绝芭乐视频app视频污在线的稀有生物是如何为了生存而抗争的。  ◎花    絮  「Disneynature」荣誉呈献首套大型生态记录片,带你走进人类鲜有踏足的神秘境,透过凌厉壮阔的形象,以及娓娓动人的配乐,揭开非洲红鹤的身世之谜。这部纪录片是在坦桑尼亚的纳特龙湖拍摄的,在坦桑尼亚北部与肯亚交界处的湖泊,位于阿鲁沙西北面113公里的东非大裂谷。湖长56公里,宽24公里,有盐、苏打、菱镁矿等矿藏。湖水温暖,成为大裂谷红鹳理想的繁殖场所。在纳特龙湖及周边水域,共生活着400万只火烈鸟。  在非洲坦桑尼亚北部的大裂谷中,座落不同的火山与湖泊,其中的立顿湖因为独特的地质环境成为红鹤鸟理想的繁殖场所。红鹤鸟的羽毛只有在繁殖期间,才会转成鲜红色;牠们为了孕育下一代,历尽艰辛、万里迁移,生生不息,构成一幅幅震撼心灵的生命蓝图。  红鹤鸟的数目因近年受到环境污染与大量猎捕,几近灭亡边缘,迪斯尼《天翅奇迹》欧美全棵艺术照为红鹤鸟留下珍贵的影像纪录,藉此唤起关注的声音。  为了拍摄影片,制作者在Natron湖边居住了14个月。  这是动物界最神奇的一个群体。坦桑尼亚北部的纳特龙湖水的咸度超过死海,可是在这个湖边聚集了大量火烈鸟,其数目之大超乎人们的想象。它们的筑巢之地如此偏远和荒凉,以至于直到1959年欧洲一个鸟类专家才发现这片充满毒气的鸟类栖息地。这种玫瑰色的火烈鸟属于6种普查鸟类中人们知之甚少的那一种,它们是最富有色彩、最神奇也是异常漂亮的鸟群。
平淡历史
导演:
/ Wojciech Has
主演:
剧情:
  改编自契诃夫的小说林北苏婉免费阅读笔趣阁札记《没意思的故事》,电影主要讲述教授尼古拉得了神经衰弱症之后行为举止心理轨迹变化的故事,前半部分印象深刻的是拒绝给学生做毕业论文,后半部分则是关于女儿婚姻大事的抉择。第一次看窗户时学生走了,第二次看时,女儿也离他而去,再也没有回头。
拥抱故乡
导演:
/ 内详
剧情:
  以泰国东北乡村混沌神弟子现代逍遥录为背景的爱情故事
蜂鸟特攻
导演:
/ 斯蒂文·奈特
剧情:
  一年前,作为特种部队一员的约瑟夫·史密斯中士(杰森·斯坦森 Jason Statham 饰)在阿富汗战场经历了常人难以想象的血雨腥风。因某起事件他被军事法庭指控,并被诊断患有攻击压力症电视剧远山的红叶。之后约瑟夫从医院逃出,混迹在流浪汉中间艰苦求生。他化名乔伊,与名叫伊莎贝尔(维多利亚·贝维克 Victoria Bewick 饰)的女孩结伴。在一次被歹最近更新中文字幕免费徒袭击之后,慌不择路的乔伊意外闯入一幢无人房间,适逢主人赴美公干,他放心享用主人的一切物品。饱受精神困扰的他,似乎只能从善良的修女克里斯蒂娜(阿嘉塔·布泽克 Agata Buzek 饰)那里得到些许帮助。  偶然机会,乔伊涉足中国黑道,在刀头舔血赚取营生的同时,他意外听到关于伊莎贝尔的消息……
犯罪心理 第九季
导演:
/ Glenn Kershaw
剧情:
  犯罪心理第九季讲述的是故事发生在三个月之后,Mor中国小伙80old老太fatgan(去伦敦执行奥运会安保任务)和Garcia(帮助Prentiss搬入新家)从英国归来,发现身边多了一个人——长期在联邦调查局工作的语言学专家Alex Blake正式加入BAU调查组.Alex天不怕地不怕,曾因为和Strauss的矛盾而闹得满城风云.Garcia对这个新来的女人并不看好,但Alex高超的技艺最终让她转变了观念.这是好事情——BAU调查组必须明白「团结才是力量」的道理,否则他们无法面对本季的新威胁.在首集结尾观众会看到,某个反派角色不仅一直在嘲弄他们,骚扰他们,甚至在追猎他们.直到本季的季终集,BAU调查组才有机会与这个狡猾凶悍的对手展开正面对决。
妙警贼探  第二季
导演:
/ John T. Kretchmer
主演:
剧情:
  USA热门剧《妙贼警探》放出了第2季首支宣传片。这部最令人期待的剧集得到了诸如“时髦的”、“完美的”、“有趣之原野小年极的”等评价。就像最后Peter的台词一样:“这可不算完。”是的,这才是《妙贼警探》夏季攻势的开始。  而第2季除了更多Neal和Peter的对手戏外,Mozzie身上也将发生点儿“浪漫的事”:曾经出演过《数字追凶》,饰演和 Larry教授交往的女警察Megan Reeves的女演员戴安·法尔将客串《妙贼警探》,饰演 Mozzie暗恋的女招待Gina De Stefano。她的戏份将在出现在第2季初,Gina身陷麻烦之中,很需要人的帮助。而Mozzie的骑士精神当然会用在他心仪的女士身上。
恐怖地窖
导演:
/ Brendan Muldowney
剧情:
  About a week after the Woods family move in to Xaos House, their daughter Ellie goes missing during a power cut. Ellie's 终极快递2mother Keira investigates and finds that the walls have strange symbols engraved into them. After a number of terrifying supernatural experiences she comes to the conclusion that the house took Ellie. She discovers that a physicist and occultist c24小时在线播放免费观看视频alled John Fetherston, who was obsessed with finding the 11th dimension, built the house and engraved sinister equations on the 10 steps leading into the cellar. Finally, Keira must battle with the universe’s most ancient evil, or lose her family’s souls forever.
婚姻趣事
导演:
/ 乔治·库克
剧情:
  影片聚焦于平凡小市民的日常生活,通过闪回的方式讲述了一对夫妻的婚姻生活从最开44800万达影视院影始的幸福美满渐渐走向争吵不休...
罗斯玛丽的婴儿
导演:
/ 罗曼·波兰斯基
剧情:
  凯(约翰·卡萨维兹 John Cassavetes 饰)有着一个外表单薄脆弱的妻子罗斯玛丽(米亚·法罗 Mia Farrow 饰)完美拍档,自从他们搬到新公寓后,凯就和邻居一对老夫妇相谈甚欢。而罗斯玛丽却并不特别喜欢这对邻居,令她感到不适的,还有接下来的一连串怪事。  罗斯玛丽看 到了自杀的女人,在日渐诡异的生活气氛下,她还做着毛骨悚然的梦。梦中,有一个长毛怪物侵犯自己,罗斯玛丽从噩梦中醒来不久,竟得知自己已有身孕的消息。邻居老太前来照顾罗斯玛丽和腹中婴儿,然而,罗斯玛丽却渐渐怀疑,一切的古怪事情,都来自于这个表面和善慈祥的邻居,甚至还有自己的丈夫!他们正在合谋计算罗斯玛丽的婴孩。到底是罗斯玛丽的幻觉还是确有其事?当她看到出生的婴儿眼中竟无瞳孔时,罗斯玛丽知道,魔鬼的气息近在眼前。
人行地下道
导演:
/ 克日什托夫·基耶斯洛夫斯基
剧情:
  波兰一个小镇的一名教师来到华沙,看望分居的妻子,希望她能回到华沙,而不是离婚。  波兰电影大师【克日什托夫·基耶叔你命中缺我斯洛夫斯基】早期编导的28分钟短片。一部有关婚姻的短片,没有结果的挽大兵相声回。用纪录片手法拍的剧情片,跟《十诫》主题相关,试图挽回失败的爱情。
德意志零年
导演:
/ 罗伯托·罗西里尼
剧情:
  影片主要讲述战争给给人民带来的灾难,战争不仅使人民陷入饥饿贫困,还是国模芭芭拉儿童的心理产生畸形。影片中的主角是个儿童,他把他那卧床不起、患有心脏病的父亲毒4399电影免费观看死,因为他认为父亲对社会豪无用处。事后,他又因内心不安而自杀。影片表面上把这个儿童产生杀父和自杀的心理归咎于一个老师的教育错误,实际上则是在揭露德国的纳粹主义,tttzzz vip认为他们才是这一切罪恶的根源。
窈窕男女
导演:
/ 艾伦·帕克 Alan Parker
主演:
剧情:
  故事背景设定在二十世纪初,以发明健康玉米片闻名全球的凯洛博士经营了一家令信徒们为之疯狂魔幻星辰的健身疗养院,他在院中提倡禁欲、素食、瘦肠等特别的健身法,又用军事化的管理带领大家唱歌做体操,使一对慕名前来的年轻夫妻大开眼界,分别经历了一段匪夷所思的奇遇。
塔米·菲的眼睛2021
导演:
/ 迈克尔·肖沃特
剧情:
  该作品改编自2000年同名纪录片,讲述塔米·菲(杰西卡·查斯坦 饰)和吉姆·贝克(安德鲁·加菲尔德 饰)这对夫妇作为电视福音布道家的大起大落。在上世纪70-80年代,塔米·菲和吉姆·贝克从贫寒中国内2018自拍视频在线奋起,创建了当时世界上最庞大的宗教广播电视网和一个主题公园,他们传递的爱、接纳和繁荣的主题受到人们的尊敬。塔米 · 菲以她夸张的睫毛,独特的歌声、以及她热情拥抱各行各业的人们而成为传奇。不过好景不长,经济上的不当行为、诡计多端的竞争徐文明的新浪博客对手以及性丑闻的爆发使得这对夫妇的婚姻破裂,导致他们精心构建起来的帝国开始崩塌。
小逃亡者1953
导演:
/ 莫里斯·恩格尔,雷·阿什利,鲁思·奥金
主演:
剧情:
  由于母亲要出远门,照顾7岁的弟弟乔伊(Richie Andrusco 饰)的职责便落到了哥哥雷利(Ri欲情火箭筒chard Brewster 饰)的肩上,对此感到十分厌烦的雷利想出了一个不仅可以博朋友们一笑,并且可以解自己心头之气的点子。在朋友们的帮助下,雷利通过装死让乔伊误以为是自己杀死了哥哥,成都4视频在线观看没想到,个性耿直的乔伊居然在惊恐之下孤身踏上了逃亡的旅程。  乔伊的目的地是风景如画的科尼岛,然而,从此地到彼处的路程对于一糖果ktv官网个7岁的男孩来说无疑十分漫长。一路上,乔伊睡沙滩,捡瓶子,通过自己的聪明才智安然无恙的前进着,而另一边,心急如焚的雷利也开始了他寻找乔伊的征程。乔伊能够平安到达科尼岛吗?
科扎克医生
导演:
/ 安杰伊·瓦依达
剧情:
  影片根据雅努什·柯扎克(Janusz Korczak)真实经历改编。  1939年9月,德军占领华沙后,柯扎克拒绝了德国人的邀请,利用教授和医生的身份,在华电视剧夫妻那些事下载沙建立了犹太孤儿院,并使这些孩子接受教育……  1942年,随着对犹太人迫害的加剧,柯扎克四处筹集资金养活200个犹太孤儿,并与抵抗组织人员接触,但很快他们遭到盖世太保逮捕。柯扎克拒绝了德国走狗为他弄到的瑞士护照,决意与孩子们在一起,最终他与孩子们一起死在了特雷布林卡毒气室……  影片力图把柯扎克塑造成视死如归的左小青 陈道明基督式人物,描述他把正义和尊严放到比安全和生命更重要的位置。  影片结尾处孩子们在乡野自由漫跑的镜头属于美好祝愿,导演也许因为觉得若拍摄他们进入毒气室太残忍了吧。
费马大定理
导演:
/ 西蒙·辛格
主演:
剧情:
  本片从证明了费玛最后定理的安德鲁‧怀尔斯 Andrew Wiles开始谈起,描述了 Fermat's Last Theorm 的历史始末,往前回溯来看,1994年正是我在念大学的时候,当时完全没有一位教授在课堂上提到这件事,也许他们认为,一位真正的研究者,自然而然地会被数学吸引,然而对一位不是天才的学生来说,他需要的是老师的指引,引导他走向更高深的专业认知,而指引的道路,就在科普的精神上。  从费玛最后定理的历史中可以发现,有许多研究成果,都是研究人员燃烧热情,试图提出「有趣」的命题,然后再尝试用逻辑验证。  费玛最后定理:xn+yn=zn 当 n>2 时,不存在整数解  1. 1963年 安德鲁‧怀尔斯 Andrew Wiles被埃里克‧坦普尔‧贝尔 Eric Temple Bell 的一本书吸引,「最后问题 The Last Problem」,故事从这里开始。  2. 毕达哥拉斯 Pythagoras 定理,任一个直角三角形,斜边的平方=另外两边的平方和  x2+y2=z2  毕达哥拉斯三元组:毕氏定理的整数解  3. 费玛 Fermat 在研究丢番图 Diophantus 的「算数」第2卷的问题8时,在页边写下了註记  「不可能将一个立方数写成两个立方数之和;或者将一个四次幂写成两个四次幂之和;或者,总的来说,不可能将一个高於2次幂,写成两个同样次幂的和。」  「对这个命题我有一个十分美妙的证明,这里空白太小,写不下。」  4. 1670年,费玛 Fermat的儿子出版了载有Fermat註记的「丢番图的算数」  5. 在Fermat的其他註记中,隐含了对 n=4 的证明 => n=8, 12, 16, 20 ... 时无解  莱昂哈德‧欧拉 Leonhard Euler 证明了 n=3 时无解 => n=6, 9, 12, 15 ... 时无解  3是质数,现在只要证明费玛最后定理对於所有的质数都成立  但 欧基里德 证明「存在无穷多个质数」  6. 1776年 索菲‧热尔曼 针对 (2p+1)的质数,证明了 费玛最后定理 "大概" 无解  7. 1825年 古斯塔夫‧勒瑞-狄利克雷 和 阿得利昂-玛利埃‧勒让德 延伸热尔曼的证明,证明了 n=5 无解  8. 1839年 加布里尔‧拉梅 Gabriel Lame 证明了 n=7 无解  9. 1847年 拉梅 与 奥古斯汀‧路易斯‧科西 Augusti Louis Cauchy 同时宣称已经证明了 费玛最后定理  最后是刘维尔宣读了 恩斯特‧库默尔 Ernst Kummer 的信,说科西与拉梅的证明,都因为「虚数没有唯一因子分解性质」而失败  库默尔证明了 费玛最后定理的完整证明 是当时数学方法不可能实现的  10.1908年 保罗‧沃尔夫斯凯尔 Paul Wolfskehl 补救了库默尔的证明  这表示 费玛最后定理的完整证明 尚未被解决  沃尔夫斯凯尔提供了 10万马克 给提供证明的人,期限是到2007年9月13日止  11.1900年8月8日 大卫‧希尔伯特,提出数学上23个未解决的问题且相信这是迫切需要解决的重要问题  12.1931年 库特‧哥德尔 不可判定性定理  第一不可判定性定理:如果公理集合论是相容的,那么存在既不能证明又不能否定的定理。  => 完全性是不可能达到的  第二不可判定性定理:不存在能证明公理系统是相容的构造性过程。  => 相容性永远不可能证明  13.1963年 保罗‧科恩 Paul Cohen 发展了可以检验给定问题是不是不可判定的方法(只适用少数情形)  证明希尔伯特23个问题中,其中一个「连续统假设」问题是不可判定的,这对於费玛最后定理来说是一大打击  14.1940年 阿伦‧图灵 Alan Turing 发明破译 Enigma编码 的反转机  开始有人利用暴力解决方法,要对 费玛最后定理 的n值一个一个加以证明。  15.1988年 内奥姆‧埃尔基斯 Naom Elkies 对於 Euler 提出的 x4+y4+z4=w4 不存在解这个推想,找到了一个反例  26824404+153656394+1879604=206156734  16.1975年 安德鲁‧怀尔斯 Andrew Wiles 师承 约翰‧科次,研究椭圆曲线  研究椭圆曲线的目的是要算出他们的整数解,这跟费玛最后定理一样  ex: y2=x3-2 只有一组整数解 52=33-2  (费玛证明宇宙中指存在一个数26,他是夹在一个平方数与一个立方数中间)  由於要直接找出椭圆曲线是很困难的,为了简化问题,数学家採用「时鐘运算」方法  在五格时鐘运算中, 4+2=1  椭圆方程式 x3-x2=y2+y  所有可能的解为 (x, y)=(0, 0) (0, 4) (1, 0) (1, 4),然后可用 E5=4 来代表在五格时鐘运算中,有四个解  对於椭圆曲线,可写出一个 E序列 E1=1, E2=4, .....  17.1954年 至村五郎 与 谷山丰 研究具有非同寻常的对称性的 modular form 模型式  模型式的要素可从1开始标号到无穷(M1, M2, M3, ...)  每个模型式的 M序列 要素个数 可写成 M1=1 M2=3 .... 这样的范例  1955年9月 提出模型式的 M序列 可以对应到椭圆曲线的 E序列,两个不同领域的理论突然被连接在一起  安德列‧韦依 採纳这个想法,「谷山-志村猜想」  18.朗兰兹提出「朗兰兹纲领」的计画,一个统一化猜想的理论,并开始寻找统一的环链  19.1984年 格哈德‧弗赖 Gerhard Frey 提出  (1) 假设费玛最后定理是错的,则 xn+yn=zn 有整数解,则可将方程式转换为y2=x3+(AN-BN)x2-ANBN 这样的椭圆方程式  (2) 弗赖椭圆方程式太古怪了,以致於无法被模型式化  (3) 谷山-志村猜想 断言每一个椭圆方程式都可以被模型式化  (4) 谷山-志村猜想 是错误的  反过来说  (1) 如果 谷山-志村猜想 是对的,每一个椭圆方程式都可以被模型式化  (2) 每一个椭圆方程式都可以被模型式化,则不存在弗赖椭圆方程式  (3) 如果不存在弗赖椭圆方程式,那么xn+yn=zn 没有整数解  (4) 费玛最后定理是对的  20.1986年 肯‧贝里特 证明 弗赖椭圆方程式无法被模型式化  如果有人能够证明谷山-志村猜想,就表示费玛最后定理也是正确的  21.1986年 安德鲁‧怀尔斯 Andrew Wiles 开始一个小阴谋,他每隔6个月发表一篇小论文,然后自己独力尝试证明谷山-志村猜想,策略是利用归纳法,加上 埃瓦里斯特‧伽罗瓦 的群论,希望能将E序列以「自然次序」一一对应到M序列  22.1988年 宫冈洋一 发表利用微分几何学证明谷山-志村猜想,但结果失败  23.1989年 安德鲁‧怀尔斯 Andrew Wiles 已经将椭圆方程式拆解成无限多项,然后也证明了第一项必定是模型式的第一项,也尝试利用 依娃沙娃 Iwasawa 理论,但结果失败  24.1992年 修改 科利瓦金-弗莱契 方法,对所有分类后的椭圆方程式都奏效  25.1993年 寻求同事 尼克‧凯兹 Nick Katz 的协助,开始对验证证明  26.1993年5月 「L-函数和算术」会议,安德鲁‧怀尔斯 Andrew Wiles 发表谷山-志村猜想的证明  27.1993年9月 尼克‧凯兹 Nick Katz 发现一个重大缺陷  安德鲁‧怀尔斯 Andrew Wiles 又开始隐居,尝试独力解决缺陷,他不希望在这时候公布证明,让其他人分享完成证明的甜美果实  28.安德鲁‧怀尔斯 Andrew Wiles 在接近放弃的边缘,在彼得‧萨纳克的建议下,找到理查德‧泰勒的协助  29.1994年9月19日 发现结合 依娃沙娃 Iwasawa 理论与 科利瓦金-弗莱契 方法就能够完全解决问题  30.「谷山-志村猜想」被证明了,故得证「费玛最后定理」  ii  费马大定理  300多年以前,法国数学家费马在一本书的空白处写下了一个定理:“设n是大于2的正整数,则不定方程xn+yn=zn没有非零整数解”。  费马宣称他发现了这个定理的一个真正奇妙的证明,但因书上空白太小,他写不下他的证明。300多年过去了,不知有多少专业数学家和业余数学爱好者绞尽脑汁企图证明它,但不是无功而返就是进展甚微。这就是纯数学中最着名的定理—费马大定理。  费马(1601年~1665年)是一位具有传奇色彩的数学家,他最初学习法律并以当律师谋生,后来成为议会议员,数学只不过是他的业余爱好,只能利用闲暇来研究。虽然年近30才认真注意数学,但费马对数论和微积分做出了第一流的贡献。他与笛卡儿几乎同时创立了解析几何,同时又是17世纪兴起的概率论的探索者之一。费马特别爱好数论,提出了许多定理,但费马只对其中一个定理给出了证明要点,其他定理除一个被证明是错的,一个未被证明外,其余的陆续被后来的数学家所证实。这唯一未被证明的定理就是上面所说的费马大定理,因为是最后一个未被证明对或错的定理,所以又称为费马最后定理。  费马大定理虽然至今仍没有完全被证明,但已经有了很大进展,特别是最近几十年,进展更快。1976年瓦格斯塔夫证明了对小于105的素数费马大定理都成立。1983年一位年轻的德国数学家法尔廷斯证明了不定方程xn+yn=zn只能有有限多组解,他的突出贡献使他在1986年获得了数学界的最高奖之一费尔兹奖。1993年英国数学家威尔斯宣布证明了费马大定理,但随后发现了证明中的一个漏洞并作了修正。虽然威尔斯证明费马大定理还没有得到数学界的一致公认,但大多数数学家认为他证明的思路是正确的。毫无疑问,这使人们看到了希望。  为了寻求费马大定理的解答,三个多世纪以来,一代又一代的数学家们前赴后继,却壮志未酬。1995年,美国普林斯顿大学的安德鲁·怀尔斯教授经过8年的孤军奋战,用13  0页长的篇幅证明了费马大定理。怀尔斯成为整个数学界的英雄。  费马大定理提出的问题非常简单,它是用一个每个中学生都熟悉的数学定理——毕达  哥拉斯定理——来表达的。2000多年前诞生的毕达哥拉斯定理说:在一个直角三角形中,  斜边的平方等于两直角边的平方之和。即X2+Y2=Z2。大约在公元1637年前后 ,当费马在  研究毕达哥拉斯方程时,他写下一个方程,非常类似于毕达哥拉斯方程:Xn+Yn=Zn,当n  大于2时,这个方程没有任何整数解。费马在《算术》这本书的靠近问题8的页边处记下这  个结论的同时又写下一个附加的评注:“对此,我确信已发现一个美妙的证法,这里的空  白太小,写不下。”这就是数学史上着名的费马大定理或称费马最后的定理。费马制造了  一个数学史上最深奥的谜。  大问题  在物理学、化学或生物学中,还没有任何问题可以叙述得如此简单和清晰,却长久不  解。E·T·贝尔(Eric Temple Bell)在他的《大问题》(The Last Problem)一书中写到,  文明世界也许在费马大定理得以解决之前就已走到了尽头。证明费马大定理成为数论中最  值得为之奋斗的事。  安德鲁·怀尔斯1953年出生在英国剑桥,父亲是一位工程学教授。少年时代的怀尔斯  已着迷于数学了。他在后来的回忆中写到:“在学校里我喜欢做题目,我把它们带回家,  编写成我自己的新题目。不过我以前找到的最好的题目是在我们社区的图书馆里发现的。  ”一天,小怀尔斯在弥尔顿街上的图书馆看见了一本书,这本书只有一个问题而没有解答  ,怀尔斯被吸引住了。  这就是E·T·贝尔写的《大问题》。它叙述了费马大定理的历史,这个定理让一个又  一个的数学家望而生畏,在长达300多年的时间里没有人能解决它。怀尔斯30多年后回忆  起被引向费马大定理时的感觉:“它看上去如此简单,但历史上所有的大数学家都未能解  决它。这里正摆着我——一个10岁的孩子——能理解的问题,从那个时刻起,我知道我永  远不会放弃它。我必须解决它。”  怀尔斯1974年从牛津大学的Merton学院获得数学学士学位,之后进入剑桥大学Clare  学院做博士。在研究生阶段,怀尔斯并没有从事费马大定理研究。他说:“研究费马可能  带来的问题是:你花费了多年的时间而最终一事无成。我的导师约翰·科茨(John Coate  s)正在研究椭圆曲线的Iwasawa理论,我开始跟随他工作。” 科茨说:“我记得一位同事  告诉我,他有一个非常好的、刚完成数学学士荣誉学位第三部考试的学生,他催促我收其  为学生。我非常荣幸有安德鲁这样的学生。即使从对研究生的要求来看,他也有很深刻的  思想,非常清楚他将是一个做大事情的数学家。当然,任何研究生在那个阶段直接开始研  究费马大定理是不可能的,即使对资历很深的数学家来说,它也太困难了。”科茨的责任  是为怀尔斯找到某种至少能使他在今后三年里有兴趣去研究的问题。他说:“我认为研究  生导师能为学生做的一切就是设法把他推向一个富有成果的方向。当然,不能保证它一定  是一个富有成果的研究方向,但是也许年长的数学家在这个过程中能做的一件事是使用他  的常识、他对好领域的直觉。然后,学生能在这个方向上有多大成绩就是他自己的事了。  ”  科茨决定怀尔斯应该研究数学中称为椭圆曲线的领域。这个决定成为怀尔斯职业生涯中的  一个转折点,椭圆方程的研究是他实现梦想的工具。  孤独的战士  1980年怀尔斯在剑桥大学取得博士学位后来到了美国普林斯顿大学,并成为这所大学  的教授。在科茨的指导下,怀尔斯或许比世界上其他人都更懂得椭圆方程,他已经成为一  个着名的数论学家,但他清楚地意识到,即使以他广博的基础知识和数学修养,证明费马  大定理的任务也是极为艰巨的。  在怀尔斯的费马大定理的证明中,核心是证明“谷山-志村猜想”,该猜想在两个非  常不同的数学领域间建立了一座新的桥梁。“那是1986年夏末的一个傍晚,我正在一个朋  友家中啜饮冰茶。谈话间他随意告诉我,肯·里贝特已经证明了谷山-志村猜想与费马大  定理间的联系。我感到极大的震动。我记得那个时刻,那个改变我生命历程的时刻,因为  这意味着为了证明费马大定理,我必须做的一切就是证明谷山-志村猜想……我十分清楚  我应该回家去研究谷山-志村猜想。”怀尔斯望见了一条实现他童年梦想的道路。  20世纪初,有人问伟大的数学家大卫·希尔伯特为什么不去尝试证明费马大定理,他  回答说:“在开始着手之前,我必须用3年的时间作深入的研究,而我没有那么多的时间  浪费在一件可能会失败的事情上。”怀尔斯知道,为了找到证明,他必须全身心地投入到  这个问题中,但是与希尔伯特不一样,他愿意冒这个风险。  怀尔斯作了一个重大的决定:要完全独立和保密地进行研究。他说:“我意识到与费  马大定理有关的任何事情都会引起太多人的兴趣。你确实不可能很多年都使自己精力集中  ,除非你的专心不被他人分散,而这一点会因旁观者太多而做不到。”怀尔斯放弃了所有  与证明费马大定理无直接关系的工作,任何时候只要可能他就回到家里工作,在家里的顶  楼书房里他开始了通过谷山-志村猜想来证明费马大定理的战斗。  这是一场长达7年的持久战,这期间只有他的妻子知道他在证明费马大定理。  欢呼与等待  经过7年的努力,怀尔斯完成了谷山-志村猜想的证明。作为一个结果,他也证明了  费马大定理。现在是向世界公布的时候了。1993年6月底,有一个重要的会议要在剑桥大  学的牛顿研究所举行。怀尔斯决定利用这个机会向一群杰出的听众宣布他的工作。他选择  在牛顿研究所宣布的另外一个主要原因是剑桥是他的家乡,他曾经是那里的一名研究生。  1993年6月23日,牛顿研究所举行了20世纪最重要的一次数学讲座。两百名数学家聆  听了这一演讲,但他们之中只有四分之一的人完全懂得黑板上的希腊字母和代数式所表达  的意思。其余的人来这里是为了见证他们所期待的一个真正具有意义的时刻。演讲者是安  德鲁·怀尔斯。怀尔斯回忆起演讲最后时刻的情景:“虽然新闻界已经刮起有关演讲的风  声,很幸运他们没有来听演讲。但是听众中有人拍摄了演讲结束时的镜头,研究所所长肯  定事先就准备了一瓶香槟酒。当我宣读证明时,会场上保持着特别庄重的寂静,当我写完  费马大定理的证明时,我说:‘我想我就在这里结束’,会场上爆发出一阵持久的鼓掌声  。”  《纽约时报》在头版以《终于欢呼“我发现了!”,久远的数学之谜获解》为题报道  费马大定理被证明的消息。一夜之间,怀尔斯成为世界上最着名的数学家,也是唯一的数  学家。《人物》杂志将怀尔斯与戴安娜王妃一起列为“本年度25位最具魅力者”。最有创  意的赞美来自一家国际制衣大公司,他们邀请这位温文尔雅的天才作他们新系列男装的模  特。  当怀尔斯成为媒体报道的中心时,认真核对这个证明的工作也在进行。科学的程序要  求任何数学家将完整的手稿送交一个有声望的刊物,然后这个刊物的编辑将它送交一组审  稿人,审稿人的职责是进行逐行的审查证明。怀尔斯将手稿投到《数学发明》,整整一个  夏天他焦急地等待审稿人的意见,并祈求能得到他们的祝福。可是,证明的一个缺陷被发  现了。  我的心灵归于平静  由于怀尔斯的论文涉及到大量的数学方法,编辑巴里·梅休尔决定不像通常那样指定  2-3个审稿人,而是6个审稿人。200页的证明被分成6章,每位审稿人负责其中一章。  怀尔斯在此期间中断了他的工作,以处理审稿人在电子邮件中提出的问题,他自信这  些问题不会给他造成很大的麻烦。尼克·凯兹负责审查第3章,1993年8月23日,他发现了  证明中的一个小缺陷。数学的绝对主义要求怀尔斯无可怀疑地证明他的方法中的每一步都  行得通。怀尔斯以为这又是一个小问题,补救的办法可能就在近旁,可是6个多月过去了  ,错误仍未改正,怀尔斯面临绝境,他准备承认失败。他向同事彼得·萨克说明自己的情  况,萨克向他暗示困难的一部分在于他缺少一个能够和他讨论问题并且可信赖的人。经过  长时间的考虑后,怀尔斯决定邀请剑桥大学的讲师理查德·泰勒到普林斯顿和他一起工作  。  泰勒1994年1月份到普林斯顿,可是到了9月,依然没有结果,他们准备放弃了。泰勒  鼓励他们再坚持一个月。怀尔斯决定在9月底作最后一次检查。9月19日,一个星期一的早  晨,怀尔斯发现了问题的答案,他叙述了这一时刻:“突然间,不可思议地,我有了一个  难以置信的发现。这是我的事业中最重要的时刻,我不会再有这样的经历……它的美是如  此地难以形容;它又是如此简单和优美。20多分钟的时间我呆望它不敢相信。然后白天我  到系里转了一圈,又回到桌子旁看看它是否还在——它还在那里。”  这是少年时代的梦想和8年潜心努力的终极,怀尔斯终于向世界证明了他的才能。世  界不再怀疑这一次的证明了。这两篇论文总共有130页,是历史上核查得最彻底的数学稿  件,它们发表在1995年5月的《数学年刊》上。怀尔斯再一次出现在《纽约时报》的头版  上,标题是《数学家称经典之谜已解决》。约翰·科茨说:“用数学的术语来说,这个最  终的证明可与分裂原子或发现DNA的结构相比,对费马大定理的证明是人类智力活动的一  曲凯歌,同时,不能忽视的事实是它一下子就使数学发生了革命性的变化。对我说来,安  德鲁成果的美和魅力在于它是走向代数数论的巨大的一步。”  声望和荣誉纷至沓来。1995年,怀尔斯获得瑞典皇家学会颁发的Schock数学奖,199  6年,他获得沃尔夫奖,并当选为美国科学院外籍院士。  怀尔斯说:“……再没有别的问题能像费马大定理一样对我有同样的意义。我拥有如  此少有的特权,在我的成年时期实现我童年的梦想……那段特殊漫长的探索已经结束了,  我的心已归于平静。”  费马大定理只有在相对数学理论的建立之后,才会得到最满意的答案。相对数学理论没有完成之前,谈这个问题是无力地.因为人们对数量和自身的认识,还没有达到一定的高度.  iii  费马大定理与怀尔斯的因果律-美国公众广播网对怀尔斯的专访  358年的难解之谜  数学爱好者费马提出的这个问题非常简单,它用一个每个中学生都熟悉的数学定理——毕达哥拉斯定理来表达。2000多年前诞生的毕达哥拉斯定理说:在一个直角三角形中,斜边的平方等于两个直角边的平方之和。即X2+Y2=Z2。大约在公元1637年前后 ,当费马在研究毕达哥拉斯方程时,他在《算术》这本书靠近问题8的页边处写下了这段文字:“设n是大于2的正整数,则不定方程xn+yn=zn没有非整数解,对此,我确信已发现一个美妙的证法,但这里的空白太小,写不下。”费马习惯在页边写下猜想,费马大定理是其中困扰数学家们时间最长的,所以被称为Fermat’s Last Theorem(费马最后的定理)——公认为有史以来最着名的数学猜想。  在畅销书作家西蒙·辛格(Simon Singh)的笔下,这段神秘留言引发的长达358年的猎逐充满了惊险、悬疑、绝望和狂喜。这段历史先后涉及到最多产的数学大师欧拉、最伟大的数学家高斯、由业余转为职业数学家的柯西、英年早逝的天才伽罗瓦、理论兼试验大师库默尔和被誉为“法国历史上知识最为高深的女性”的苏菲·姬尔曼……法国数学天才伽罗瓦的遗言、日本数学界的明日之星谷山丰的神秘自杀、德国数学爱好者保罗·沃尔夫斯凯尔最后一刻的舍死求生等等,都仿佛是冥冥间上帝导演的宏大戏剧中的一幕,为最后谜底的解开埋下伏笔。终于,普林斯顿的怀尔斯出现了。他找到谜底,把这出戏推向高潮并戛然而止,留下一段耐人回味的传奇。  对怀尔斯而言,证明费马大定理不仅是破译一个难解之谜,更是去实现一个儿时的梦想。“我10岁时在图书馆找到一本数学书,告诉我有这么一个问题,300多年前就已经有人解决了它,但却没有人看到过它的证明,也无人确信是否有这个证明,从那以后,人们就不断地求证。这是一个10岁小孩就能明白的问题,然后历史上诸多伟大的数学家们却不能解答。于是从那时起,我就试过解决它,这个问题就是费马大定理。”  怀尔斯于1970年先后在牛津大学和剑桥大学获得数学学士和数学博士学位。“我进入剑桥时,我真正把费马大定理搁在一边了。这不是因为我忘了它,而是我认识到我们所掌握的用来攻克它的全部技术已经反复使用了130年。而这些技术似乎没有触及问题根本。”因为担心耗费太多时间而一无所获,他“暂时放下了”对费马大定理的思索,开始研究椭圆曲线理论——这个看似与证明费马大定理不相关的理论后来却成为他实现梦想的工具。  时间回溯至20世纪60年代,普林斯顿数学家朗兰兹提出了一个大胆的猜想:所有主要数学领域之间原本就存在着的统一的链接。如果这个猜想被证实,意味着在某个数学领域中无法解答的任何问题都有可能通过这种链接被转换成另一个领域中相应的问题——可以被一整套新方案解决的问题。而如果在另一个领域内仍然难以找到答案,那么可以把问题再转换到下一个数学领域中……直到它被解决为止。根据朗兰兹纲领,有一天,数学家们将能够解决曾经是最深奥最难对付的问题——“办法是领着这些问题周游数学王国的各个风景胜地”。这个纲领为饱受哥德尔不完备定理打击的费马大定理证明者们指明了救赎之路——根据不完备定理,费马大定理是不可证明的。  怀尔斯后来正是依赖于这个纲领才得以证明费马大定理的:他的证明——不同于任何前人的尝试——是现代数学诸多分支(椭圆曲线论,模形式理论,伽罗华表示理论等等)综合发挥作用的结果。20世纪50年代由两位日本数学家(谷山丰和志村五郎)提出的谷山—志村猜想(Taniyama-Shimura conjecture)暗示:椭圆方程与模形式两个截然不同的数学岛屿间隐藏着一座沟通的桥梁。随后在1984年,德国数学家格哈德·费赖(Gerhard Frey)给出了如下猜想:假如谷山—志村猜想成立,则费马大定理为真。这个猜想紧接着在1986年被肯·里贝特(Ken Ribet)证明。从此,费马大定理不可摆脱地与谷山—志村猜想链接在一起:如果有人能证明谷山—志村猜想(即“每一个椭圆方程都可以模形式化”),那么就证明了费马大定理。  “人类智力活动的一曲凯歌”  怀尔斯诡秘的行踪让普林斯顿的着名数学家同事们困惑。彼得·萨奈克(Peter Sarnak)回忆说:“ 我常常奇怪怀尔斯在做些什么?……他总是静悄悄的,也许他已经‘黔驴技穷’了。”尼克·凯兹则感叹到:“一点暗示都没有!”对于这次惊天“大预谋”,肯·里比特(Ken Ribet)曾评价说:“这可能是我平生来见过的唯一例子,在如此长的时间里没有泄露任何有关工作的信息。这是空前的。  1993年晚春,在经过反复的试错和绞尽脑汁的演算,怀尔斯终于完成了谷山—志村猜想的证明。作为一个结果,他也证明了费马大定理。彼得·萨奈克是最早得知此消息的人之一,“我目瞪口呆、异常激动、情绪失常……我记得当晚我失眠了”。  同年6月,怀尔斯决定在剑桥大学的大型系列讲座上宣布这一证明。 “讲座气氛很热烈,有很多数学界重要人物到场,当大家终于明白已经离证明费马大定理一步之遥时,空气中充满了紧张。” 肯·里比特回忆说。巴里·马佐尔(Barry Mazur)永远也忘不了那一刻:“我之前从未看到过如此精彩的讲座,充满了美妙的、闻所未闻的新思想,还有戏剧性的铺垫,充满悬念,直到最后到达高潮。”当怀尔斯在讲座结尾宣布他证明了费马大定理时,他成了全世界媒体的焦点。《纽约时报》在头版以《终于欢呼“我发现了!”久远的数学之谜获解》(“At Last Shout of ‘Eureka!’ in Age-Old Math Mystery”)为题报道费马大定理被证明的消息。一夜之间,怀尔斯成为世界上唯一的数学家。《人物》杂志将怀尔斯与戴安娜王妃一起列为“本年度25位最具魅力者”。  与此同时,认真核对这个证明的工作也在进行。遗憾的是,如同这之前的“费马大定理终结者”一样,他的证明是有缺陷的。怀尔斯现在不得不在巨大的压力之下修正错误,其间数度感到绝望。John Conway曾在美国公众广播网(PBS)的访谈中说: “当时我们其他人(怀尔斯的同事)的行为有点像‘苏联政体研究者’,都想知道他的想法和修正错误的进展,但没有人开口问他。所以,某人会说,‘我今天早上看到怀尔斯了。’‘他露出笑容了吗?’‘他倒是有微笑,但看起来并不高兴。’”  撑到1994年9月时,怀尔斯准备放弃了。但他临时邀请的研究搭档泰勒鼓励他再坚持一个月。就在截止日到来之前两周, 9月19日 ,一个星期一的早晨,怀尔斯发现了问题的答案,他叙述了这一时刻:“突然间,不可思议地,我发现了它……它美得难以形容,简单而优雅。我对着它发了20多分钟呆。然后我到系里转了一圈,又回到桌子旁看看它是否还在那里——它确实还在那里。”  怀尔斯的证明为他赢得了最慷慨的褒扬,其中最具代表性的是他在剑桥时的导师、着名数学家约翰·科茨的评价:“它(证明)是人类智力活动的一曲凯歌”。  一场旷日持久的猎逐就此结束,从此费马大定理与安德鲁·怀尔斯的名字紧紧地被绑在了一起,提到一个就不得不提到另外一个。这是费马大定理与安德鲁·怀尔斯的因果律。  历时八年的最终证明  在怀尔斯不多的接受媒体采访中,美国公众广播网(PBS)NOVA节目对怀尔斯的专访相当精彩有趣,本文节选部分以飨读者。  七年孤独  NOVA:通常人们通过团队来获得工作上的支持,那么当你碰壁时是怎么解决问题的呢?  怀尔斯:当我被卡住时我会沿着湖边散散步,散步的好处是使你会处于放松状态,同时你的潜意识却在继续工作。通常遇到困扰时你并不需要书桌,而且我随时把笔纸带上,一旦有好主意我会找个长椅坐下来打草稿……  NOVA:这七年一定交织着自我怀疑与成功……你不可能绝对有把握证明。  怀尔斯:我确实相信自己在正确的轨道上,但那并不意味着我一定能达到目标——也许仅仅因为解决难题的方法超出现有的数学,也许我需要的方法下个世纪也不会出现。所以即便我在正确的轨道上,我却可能生活在错误的世纪。  NOVA:最终在1993年,你取得了突破。  怀尔斯:对,那是个5月末的早上。Nada,我的太太,和孩子们出去了。我坐在书桌前思考最后的步骤,不经意间看到了一篇论文,上面的一行字引起了我的注意。它提到了一个19世纪的数学结构,我霎时意识到这就是我该用的。我不停地工作,忘记下楼午饭,到下午三四点时我确信已经证明了费马大定理,然后下楼。Nada很吃惊,以为我这时才回家,我告诉她,我解决了费马大定理。  最后的修正  NOVA:《纽约时报》在头版以《终于欢呼“我发现了!”,久远的数学之谜获解》,但他们并不知道这个证明中有个错误。  怀尔斯:那是个存在于关键推导中的错误,但它如此微妙以至于我忽略了。它很抽象,我无法用简单的语言描述,就算是数学家也需要研习两三个月才能弄懂。  NOVA:后来你邀请剑桥的数学家理查德·泰勒来协助工作,并在1994年修正了这个最后的错误。问题是,你的证明和费马的证明是同一个吗?  怀尔斯:不可能。这个证明有150页长,用的是20世纪的方法,在费马时代还不存在。  NOVA:那就是说费马的最初证明还在某个未被发现的角落?  怀尔斯:我不相信他有证明。我觉得他说已经找到解答了是在哄自己。这个难题对业余爱好者如此特别在于它可能被17世纪的数学证明,尽管可能性极其微小。  NOVA:所以也许还有数学家追寻这最初的证明。你该怎么办呢?  怀尔斯:对我来说都一样,费马是我童年的热望。我会再试其他问题……证明了它我有一丝伤感,它已经和我们一起这么久了……人们对我说“你把我的问题夺走了”,我能带给他们其他的东西吗?我感觉到有责任。我希望通过解决这个问题带来的兴奋可以激励青年数学家们解决其他许许多多的难题。  iv  谷山-志村定理(Taniyama-Shimura theorem)建立了椭圆曲线(代数几何的对象)和模形式(某种数论中用到的周期性全纯函数)之间的重要联系。虽然名字是从谷山-志村猜想而来,定理的证明是由安德鲁·怀尔斯, Christophe Breuil, Brian Conrad, Fred Diamond,和Richard Taylor完成.  若p是一个质数而E是一个Q(有理数域)上的一个椭圆曲线,我们可以简化定义E的方程模p;除了有限个p值,我们会得到有np个元素的有限域Fp上的一个椭圆曲线。然后考虑如下序列  ap = np − p,  这是椭圆曲线E的重要的不变量。从傅里叶变换,每个模形式也会产生一个数列。一个其序列和从模形式得到的序列相同的椭圆曲线叫做模的。 谷山-志村定说:  "所有Q上的椭圆曲线是模的"。  该定理在1955年9月由谷山丰提出猜想。到1957年为止,他和志村五郎一起改进了严格性。谷山于1958年自杀身亡。在1960年代,它和统一数学中的猜想Langlands纲领联系了起来,并是关键的组成部分。猜想由André Weil于1970年代重新提起并得到推广,Weil的名字有一段时间和它联系在一起。尽管有明显的用处,这个问题的深度在后来的发展之前并未被人们所感觉到。  在1980年代当Gerhard Freay建议谷山-志村猜想(那时还是猜想)蕴含着费马最后定理的时候,它吸引到了不少注意力。他通过试图表明费尔马大定理的任何范例会导致一个非模的椭圆曲线来做到这一点。Ken Ribet后来证明了这一结果。在1995年,Andrew Wiles和Richard Taylor证明了谷山-志村定理的一个特殊情况(半稳定椭圆曲线的情况),这个特殊情况足以证明费尔马大定理。  完整的证明最后于1999年由Breuil,Conrad,Diamond,和Taylor作出,他们在Wiles的基础上,一块一块的逐步证明剩下的情况直到全部完成。  数论中类似于费尔马最后定理得几个定理可以从谷山-志村定理得到。例如:没有立方可以写成两个互质n次幂的和, n ≥ 3. (n = 3的情况已为欧拉所知)  在1996年三月,Wiles和Robert Langlands分享了沃尔夫奖。虽然他们都没有完成给予他们这个成就的定理的完整形式,他们还是被认为对最终完成的嘟嘟嘟影视在线观看证明有着决定性影响。
震惊罪案 第一季
导演:
/ Elise Greven,Jeremiah Crowell
主演:
剧情:
 2012韩国电影在线看免费观看 
小兄弟1927
导演:
/ J.A. Howe,刘易斯 迈尔斯通 (Lewis Milestone),Ted Wilde
主演:
剧情:
  城镇警长家里最小的孩子没有父亲和哥哥们那样壮实,但他用第八天之夜在线头脑战胜了劫匪,为家庭和自己赢得了荣誉战狼3免费完整电影,当然,还有未婚妻。
你躯体之泪的诡异颜色
导演:
/ 布鲁诺·福扎尼,伊莲娜·卡泰特
剧情:
  铅黄电影。有点实验性的Cult片,《安娜迷宫》的导演又给大家带来感官盛宴。怪奇公寓妇女失踪,墙后房间通往365天和我的黑道大佬1童年,礼盒爬出帽子刺客,壁纸起伏欲望隧道;时空循环自我谋杀,白发初恋听诊凶案,糖果夹杂玻璃碎片,爆头画皮血流满屋……
犯罪现场调查 第九季
导演:
/ Richard J. Lewis
剧情:
  CSI的第九季将于十月十日重装上阵。虽说是CSI系列中最晚登场的一个,然而,且不提爱好者们的反映,单就已发行的宣传片来看,Gil grissom和他的小队所带来的紧张刺激也绝不会是排在倒数第一的。在Grissom(William Petersen饰)缓缓道来的画外音中拉开序幕,CSI第九季的首集注定将在本剧的辉煌历史上写下浓墨重彩的一笔。  "作为一名CSI,我们总在人们最低谷的时候与他们相会。‘节哀顺变’,这句我们被要求对他们所说的套话,其实并没能带去多少安慰。”  正如先前所报导过的,本季首集,“为了Warrick”,将会给上季的结尾,Warrick Brown(Gary Dourda电影原罪在线观看n饰)中枪后流血而死,作一个总结。这个事件也被认为是“一个没有人预料到的契机,这个案件成为了所有人一生中最重要的案子,而将整个CSI紧紧团结在一起”。而这,也正是整个宣传片所着重强调的。在这个一分半钟的短片里我们需要关注的是,新角色 Riley Adams(Lauren Lee Smith)闪亮登场,与此同时,在悲剧发生之际,即将离开的Sara Sidle(Jorja Fox饰)与Grissom紧紧相拥。  或许,对于据称因为私人原因而离开剧组的Dourdan,宣传片中使用了许多Warrick与CSI成员们一同工作时的回顾片段,为其致敬。CSI团队一直是在做着他们最拿手的工作,可是这一次,他们是为了团队中身处险境的一员。此外,Jim Brass(Paul Guilfoyle饰)更水多的女人男人最上瘾对一群警察宣称,他们现时只考虑解决Warrick的案子。  在片尾处,Grissom冲向血流不止的Warrick,在他身边不停地提醒着:“Warrick,保持清醒”,随后画面终止在了Warrick睁大的眼睛上。画面渐渐变为空白,而我们依然能听到Grissom的呼喊:“天哪。”  万众瞩目的CSI即将开播,让我们一同期待老G将会给我们带来什么样的惊奇。(当然他的离去不算在内。。。)
寻找小糖人
导演:
/ 马利克·本德杰鲁
主演:
剧情:
  罗德里格斯在上世纪70年代发行过两张专辑《Cold Fact》与《Coming From Reality》,在南非有超过50万的销量且知名度可与滚石乐队相提并论。但与其他知名的美国歌手不同,南非的歌迷得不到任何一点关于罗德里格斯的信息,除了专辑歌曲之外唯一能了解的只有专 辑封面上一张并不清晰的相片。两张专辑后,他好像也就此销声匿迹。  对于在南非的辉煌成绩,罗德里格斯其实并不知情,他在美国过着截然不同的生活,没有知名度,专辑销量不佳,被唱片公司抛弃,曾经一度做着装修屋顶的体力活…… 南非开普敦一家唱片店老板斯蒂芬与音乐记者克雷格听到罗德里格斯在舞台上奇特自杀的传闻后展开调查,寻找小糖人之路就此开始,一段神秘的传奇故事就此展开……袁咏仪电视剧
决战诺曼底 第一季
导演:
/ Mark Lewis
主演:
/ 内详 
剧情:
  A story of the men who put battling 蝙蝠侠前传machines to ultimate test-the ordinary soldiers w免费电视连续剧ho participated in the greatest amphibious invasion in history.
国际市场
导演:
/ 尹济均
剧情:
朝鲜唐人街探案3免费观看战争期间,少年尹德秀随同父母登上美军的救援船,却遭遇了毕生难忘的生离死别。战火虽然停息,南北半岛则一分为二,饱受炮火荼毒的北方故乡遥不可及。长大之后,代替父亲成为顶梁柱的德秀(黄政民 饰)努力赚钱...
暴风雨中的孤儿
导演:
/ 大卫·格里菲斯
剧情:
  Henriette and Louise, a foundling, are raised together as sisters. When Louise goes blind, Henriette swears to take care of her forever. They go to Paris to see if Louise's blindness can be cured, but are separated when an aristocrat lusts after Henriette and abducts her. Only Chevalier de Vaudrey is kind to her, and they fall in love. The French Revolution replaces the corrupt Aristocracy with the equally corrupt Robespierre. De Vaudrey, who has always been good to peasants, 樱花风车动漫is condemned to death for being an aristocrat, and Henriette for harboring him. Will revolutionary hero Danton, the only voice for mercy in the new regime, be able to save them from the guillotine?